Package: MGLM 0.2.1

MGLM: Multivariate Response Generalized Linear Models

Provides functions that (1) fit multivariate discrete distributions, (2) generate random numbers from multivariate discrete distributions, and (3) run regression and penalized regression on the multivariate categorical response data. Implemented models include: multinomial logit model, Dirichlet multinomial model, generalized Dirichlet multinomial model, and negative multinomial model. Making the best of the minorization-maximization (MM) algorithm and Newton-Raphson method, we derive and implement stable and efficient algorithms to find the maximum likelihood estimates. On a multi-core machine, multi-threading is supported.

Authors:Yiwen Zhang <[email protected]> and Hua Zhou <[email protected]>

MGLM_0.2.1.tar.gz
MGLM_0.2.1.zip(r-4.5)MGLM_0.2.1.zip(r-4.4)MGLM_0.2.1.zip(r-4.3)
MGLM_0.2.1.tgz(r-4.4-any)MGLM_0.2.1.tgz(r-4.3-any)
MGLM_0.2.1.tar.gz(r-4.5-noble)MGLM_0.2.1.tar.gz(r-4.4-noble)
MGLM_0.2.1.tgz(r-4.4-emscripten)MGLM_0.2.1.tgz(r-4.3-emscripten)
MGLM.pdf |MGLM.html
MGLM/json (API)

# Install 'MGLM' in R:
install.packages('MGLM', repos = c('https://juhkim111.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

4.65 score 4 stars 1 packages 53 scripts 841 downloads 7 mentions 30 exports 0 dependencies

Last updated 3 years agofrom:e0b8d5d6de. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 09 2024
R-4.5-winNOTEOct 09 2024
R-4.5-linuxNOTEOct 09 2024
R-4.4-winNOTEOct 09 2024
R-4.4-macNOTEOct 09 2024
R-4.3-winOKOct 09 2024
R-4.3-macOKOct 09 2024

Exports:AICBICcoefddirmddirmndgdirmdgdirmndmndmultndnegdnegmndofkrlogLikmaxlambdaMGLMfitMGLMregMGLMreg.fitMGLMsparseregMGLMsparsereg.fitMGLMtunepathpredictrdirmrdirmnrgdirmrgdirmnrmnrnegmnshow

Dependencies:

MGLM Vignette

Rendered frommglm_vignette.rmdusingknitr::knitron Oct 09 2024.

Last update: 2022-04-13
Started: 2018-01-14

Readme and manuals

Help Manual

Help pageTopics
MGLM: A package for multivariate response generalized linear modelsMGLM-package
Akaike's Information Criterion (AIC)AIC AIC,MGLMfit-method AIC,MGLMreg-method AIC,MGLMsparsereg-method AIC,MGLMtune-method
Bayesian information criterion (BIC)BIC BIC,MGLMfit-method BIC,MGLMreg-method BIC,MGLMsparsereg-method BIC,MGLMtune-method
Extract Model Coefficientscoef coef,MGLMfit-method coef,MGLMreg-method coef,MGLMsparsereg-method coef,MGLMtune-method
Details of the distributionsdist
Fit multivariate discrete distributionsDMD.DM.fit DMD.GDM.fit DMD.NegMN.fit MGLMfit
Extract degrees of freedomdof dof,MGLMsparsereg-method
Khatri-Rao product of two matriceskr
Extract log-likelihoodlogLik logLik,MGLMfit-method logLik,MGLMreg-method logLik,MGLMsparsereg-method
Extract maximum lambdamaxlambda maxlambda,MGLMsparsereg-method
Deprecated function(s) in the MGLM packageddirm dgdirm dneg MGLM-deprecated rdirm rgdirm
Class '"MGLMfit"'MGLMfit-class
Fit multivariate response GLM regressionMGLMreg MGLMreg.fit
Class '"MGLMreg"'MGLMreg-class
Fit multivariate GLM sparse regressionMGLMsparsereg MGLMsparsereg.fit
Class '"MGLMsparsereg"'MGLMsparsereg-class
Choose the tuning parameter value in sparse regressionMGLMtune
Class '"MGLMtune"'MGLMtune-class
Extract pathpath path,MGLMtune-method
Predict method for MGLM Fitspredict predict,MGLMreg predict,MGLMreg,ANY-method predict,MGLMreg-method
The Dirichlet Multinomial Distributionddirmn dirmn rdirmn
The Generalized Dirichlet Multinomial Distributiondgdirmn gdirmn rgdirmn
The Multinomial Distributiondmn mn rmn
RNA-seq count datarnaseq
The Negative Multinomial Distributiondnegmn negmn rnegmn
Show an objectshow show,MGLMfit-method show,MGLMreg-method show,MGLMsparsereg-method show,MGLMtune-method